Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526014

RESUMO

To understand the biology of a species, it is often crucial to be able to differentiate males and females. However, many species lack easily identifiable sexually dimorphic traits. In those that possess sex chromosomes, molecular sexing offers a good alternative, and molecular sexing assays can be developed through the comparison of male and female genomic sequences. However, in many nonmodel species, sex chromosomes are poorly differentiated, and identifying sex-linked sequences and developing sexing assays can be challenging. In this study, we highlight a simple transcriptome-based procedure for the detection of sex-linked markers suitable for the development of sexing assays that circumvents limitations of more commonly used approaches. We apply it to the spotted snow skink Carinascincus ocellatus, a viviparous lizard with homomorphic XY chromosomes that has environmentally induced sex reversal. With transcriptomes from three males and three females alone, we identify thousands of putative Y-linked sequences. We confirm linkage through alignment of assembled transcripts to a distantly related lizard genome and readily design multiple single locus polymerase chain reaction primers to sex C. ocellatus and related species. Our approach also facilitates valuable comparisons of sex determining systems on a broad taxonomic scale.


Assuntos
Cromossomos Sexuais , Transcriptoma , Feminino , Masculino , Humanos , Cromossomos Sexuais/genética , Genoma , Genômica
2.
Nat Sci (Weinh) ; 4(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38505006

RESUMO

As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.

3.
Sci Rep ; 14(1): 5419, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485710

RESUMO

Diminishing natural resources and increasing climatic volatility are impacting agri-food systems, prompting the need for sustainable and resilient alternatives. Python farming is well established in Asia but has received little attention from mainstream agricultural scientists. We measured growth rates in two species of large pythons (Malayopython reticulatus and Python bivittatus) in farms in Thailand and Vietnam and conducted feeding experiments to examine production efficiencies. Pythons grew rapidly over a 12-month period, and females grew faster than males. Food intake and growth rates early in life were strong predictors of total lifetime growth, with daily mass increments ranging from 0.24 to 19.7 g/day for M. reticulatus and 0.24 to 42.6 g/day for P. bivittatus, depending on food intake. Pythons that fasted for up to 4.2 months lost an average of 0.004% of their body mass per day, and resumed rapid growth as soon as feeding recommenced. Mean food conversion rate for dressed carcasses was 4.1%, with useable products (dressed carcass, skin, fat, gall bladder) comprising 82% of the mass of live animals. In terms of food and protein conversion ratios, pythons outperform all mainstream agricultural species studied to date. The ability of fasting pythons to regulate metabolic processes and maintain body condition enhances food security in volatile environments, suggesting that python farming may offer a flexible and efficient response to global food insecurity.


Assuntos
Boidae , Animais , Feminino , Masculino , Boidae/fisiologia , Fazendas , Tailândia , Vietnã
4.
Anim Cogn ; 27(1): 26, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530499

RESUMO

Little is known about the behavioral and cognitive traits that best predict invasion success. Evidence is mounting that cognitive performance correlates with survival and fecundity, two pivotal factors for the successful establishment of invasive populations. We assessed the quantity discrimination ability of the globally invasive red-eared slider (Trachemys scripta elegans). We further compared it to that of the native stripe-necked turtle (Mauremys sinensis), which has been previously evaluated for its superior quantity discrimination ability. Specifically, our experimental designs aimed to quantify the learning ability as numerosity pairs increased in difficulty (termed fixed numerosity tests), and the immediate response when turtles were presented with varied challenges concurrently in the same tests (termed mixed numerosity tests). Our findings reaffirm the remarkable ability of freshwater turtles to discern numerical differences as close as 9 vs 10 (ratio = 0.9), which was comparable to the stripe-necked turtle's performance. However, the red-eared slider exhibited a moderate decrease in performance in high ratio tests, indicating a potentially enhanced cognitive capacity to adapt to novel challenges. Our experimental design is repeatable and is adaptable to a range of freshwater turtles. These findings emphasize the potential importance of cognitive research to the underlying mechanisms of successful species invasions.


Assuntos
Tartarugas , Animais , Tartarugas/fisiologia , Projetos de Pesquisa , Adaptação Fisiológica
5.
J Vet Diagn Invest ; : 10406387241239912, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516722

RESUMO

Lactococcus garvieae is the causative agent of lactococcosis in fish and an emerging zoonotic pathogen with high levels of antimicrobial resistance. We report a case of L. garvieae-associated septicemia in a central bearded dragon (Pogona vitticeps) confirmed via whole-blood PCR and direct sequencing. Following a 30-d course of ceftazidime (20 mg/kg IM q72h), the animal's clinical condition had not resolved; leukopenia persisted, with heterophil toxic change. Coelomic ultrasound findings were consistent with preovulatory follicular stasis, folliculitis, and coelomitis. Following surgical ovariectomy and an additional 30-d course of ceftazidime, the animal's behavior and appetite returned to normal, the animal tested negative via whole-blood PCR assay, and the CBC was unremarkable. To our knowledge, L. garvieae with L. garvieae-associated clinical disease has not been reported previously in a bearded dragon. We conclude that L. garvieae should be considered as a possible etiologic agent in cases of septicemia in bearded dragons, with the potential for zoonotic transmission warranting further investigation.

6.
Pest Manag Sci ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507257

RESUMO

Insect pests are a major global factor affecting agricultural crop productivity and quality. Rapid and precise insect pest detection is crucial for improving handling and prediction techniques. There are several methods for pest detection and classification tasks; still, the inaccurate detection, computation complexity and several other challenges affect the performance of the model. Thus, this research presents a Deep Learning (DL) approach that has led to significant advancements and is currently being applied successfully in many domains, such as autonomous insect pest detection. Initially, the input images are gathered from the test dataset. The next step in pre-processing the input images is to improve the model capacity by removing unwanted data using the Enhanced Kuan filter method. Then, the pre-processed images are segmented using the Attention-based U-Net method. Finally, a novel Attention Based Reptile Residual Capsule Auto Encoder (ARRCAE) technique is proposed to classify and recognize crop pests. Furthermore, the Improved Reptile Search Optimisation (IRSO) algorithm is employed to fine-tune the classification parameters optimally. As a result, the proposed study enhances performance by classifying crop pest detection systems. The suggested method makes use of a Python tool for simulation, and pest datasets are utilized for result analysis. The suggested model beats other current models with an accuracy of 98%, precision of 97%, recall of 96%, and specificity of 99% for the pest dataset, per the simulation results that were obtained. This article is protected by copyright. All rights reserved.

7.
Microbiome ; 12(1): 37, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388458

RESUMO

BACKGROUND: Host-microbial interactions are expected to affect species' adaptability to climate change but have rarely been explored in ectothermic animals. Some studies have shown that short-term warming reduced gut microbial diversity that could hamper host functional performance. RESULTS: However, our longitudinal experiments in semi-natural conditions demonstrated that warming decreased gut microbiota diversity at 2 months, but increased diversity at 13 and 27 months in a desert lizard (Eremias multiocellata). Simultaneously, long-term warming significantly increased the antibacterial activity of serum, immune responses (higher expression of intestinal immune-related genes), and the concentration of short-chain fatty acids (thereby intestinal barrier and immunity) in the lizard. Fecal microbiota transplant experiments further revealed that increased diversity of gut microbiota significantly enhanced antibacterial activity and the immune response of lizards. More specifically, the enhanced immunity is likely due to the higher relative abundance of Bacteroides in warming lizards, given that the bacteria of Bacteroides fragilis regulated IFN-ß expression to increase the immune response of lizards under a warming climate. CONCLUSIONS: Our study suggests that gut microbiota can help ectotherms cope with climate warming by enhancing host immune response, and highlights the importance of long-term studies on host-microbial interactions and their biological impacts.


Assuntos
Microbioma Gastrointestinal , Lagartos , Animais , Lagartos/microbiologia , Mudança Climática , Bactérias/genética , Antibacterianos
8.
Viruses ; 16(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400085

RESUMO

Serpentoviruses are a subfamily of positive sense RNA viruses in the order Nidovirales, family Tobaniviridae, associated with respiratory disease in multiple clades of reptiles. While the broadest viral diversity is reported from captive pythons, other reptiles, including colubrid snakes, turtles, and lizards of captive and free-ranging origin are also known hosts. To better define serpentoviral diversity, eleven novel serpentovirus genomes were sequenced with an Illumina MiSeq and, when necessary, completed with other Sanger sequencing methods. The novel serpentoviral genomes, along with 57 other previously published serpentovirus genomes, were analyzed alongside four outgroup genomes. Genomic analyses included identifying unique genome templates for each serpentovirus clade, as well as analysis of coded protein composition, potential protein function, protein glycosylation sites, differences in phylogenetic history between open-reading frames, and recombination. Serpentoviral genomes contained diverse protein compositions. In addition to the fundamental structural spike, matrix, and nucleoprotein proteins required for virion formation, serpentovirus genomes also included 20 previously uncharacterized proteins. The uncharacterized proteins were homologous to a number of previously characterized proteins, including enzymes, transcription factors, scaffolding, viral resistance, and apoptosis-related proteins. Evidence for recombination was detected in multiple instances in genomes from both captive and free-ranging snakes. These results show serpentovirus as a diverse clade of viruses with genomes that code for a wide diversity of proteins potentially enhanced by recombination events.


Assuntos
Genoma , Nidovirales , Filogenia , Sequência de Bases , Nidovirales/genética , Recombinação Genética , Genoma Viral
9.
J Vet Diagn Invest ; 36(2): 258-261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362634

RESUMO

Two adult male Puerto Rican crested anoles (Anolis cristatellus cristatellus) housed in a research facility were presented with debilitation and were euthanized. On autopsy, anole 1 had a large cystic white structure in the left pelvic limb, which protruded through the ruptured epidermis, and a large, poorly demarcated swelling in the right caudal abdomen. Anole 2 had masses in the mid-dorsum, caudal dorsum, left pelvic limb, and tail. These masses contained variably sized cestode larvae, which ruptured into the coelomic cavity. Evaluation of the larvae revealed a thickened and wrinkled anterior end, with a cleft-like invagination, consistent with either a plerocercoid sparganum or a tetrathyridium. Histologically, several cestode larvae were contained in the body wall of both anoles. These were up to 650 µm in diameter, with a thin tegument and a spongy parenchyma. The spongy parenchyma contained numerous, up to 30 µm diameter, sharply demarcated, basophilic-to-black structures (calcareous corpuscles). There was pneumonia and hepatitis in anole 2, suggestive of potential secondary infection subsequent to immunosuppression. Molecular amplification of the cytochrome C oxidase subunit 1 revealed 100% homology for the COX1 gene of the diphyllobothriid tapeworm Spirometra erinaceieuropaei, also known as Spirometra mansoni.


Assuntos
Infecções por Cestoides , Spirometra , Masculino , Animais , Spirometra/genética , Plerocercoide/genética , Infecções por Cestoides/veterinária
10.
Swiss J Palaeontol ; 143(1): 4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328031

RESUMO

Placodonts were durophagous reptiles of the Triassic seas with robust skulls, jaws, and enlarged, flat, pebble-like teeth. During their evolution, they underwent gradual craniodental changes from the Early Anisian to the Rhaetian, such as a reduction in the number of teeth, an increase in the size of the posterior palatal teeth, an elongation of the premaxilla/rostrum, and a widening of the temporal region. These changes are presumably related to changes in dietary habits, which, we hypothesise, are due to changes in the type and quality of food they consumed. In the present study, the dental wear pattern of a total of nine European Middle to Late Triassic placodont species were investigated using 2D and 3D microwear analyses to demonstrate whether there could have been a dietary shift or grouping among the different species and, whether the possible changes could be correlated with environmental changes affecting their habitats. The 3D analysis shows overlap between species with high variance between values and there is no distinct separation. The 2D analysis has distinguished two main groups. The first is characterised by low number of wear features and high percentage of large pits. The other group have a high feature number, but low percentage of small pits. The 2D analysis showed a correlation between the wear data and the size of the enlarged posterior crushing teeth. Teeth with larger sizes showed less wear feature (with higher pit ratio) but larger individual features. In contrast, the dental wear facet of smaller crushing teeth shows more but smaller wear features (with higher scratch number). This observation may be related to the size of the food consumed, i.e., the wider the crown, the larger food it could crush, producing larger features. Comparison with marine mammals suggests that the dietary preference of Placochelys, Psephoderma and Paraplacodus was not exclusively hard, thick-shelled food. They may have had a more mixed diet, similar to that of modern sea otters. The diet of Henodus may have included plant food, similar to the modern herbivore marine mammals and lizards. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00304-x.

11.
Ecotoxicology ; 33(2): 164-176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329640

RESUMO

Mercury (Hg) is a ubiquitous environmental contaminant known to bioaccumulate in biota and biomagnify in food webs. Parasites occur in nearly every ecosystem and often interact in complex ways with other stressors that their hosts experience. Hepatozoon spp. are intraerythrocytic parasites common in snakes. The Florida green watersnake (Nerodia floridana) and the banded watersnake (Nerodia fasciata) occur syntopically in certain aquatic habitats in the Southeastern United States. The purpose of this study was to investigate relationships among total mercury (THg) concentrations, body size, species, habitat type and prevalence and parasitemia of Hepatozoon spp. infections in snakes. In the present study, we sampled N. floridana and N. fasciata from former nuclear cooling reservoirs and isolated wetlands of the Savannah River Site in South Carolina. We used snake tail clips to quantify THg and collected blood samples for hemoparasite counts. Our results indicate a significant, positive relationship between THg and snake body size in N. floridana and N. fasciata in both habitats. Average THg was significantly higher for N. fasciata compared to N. floridana in bays (0.22 ± 0.02 and 0.08 ± 0.006 mg/kg, respectively; p < 0.01), but not in reservoirs (0.17 ± 0.02 and 0.17 ± 0.03 mg/kg, respectively; p = 0.29). Sex did not appear to be related to THg concentration or Hepatozoon spp. infections in either species. We found no association between Hg and Hepatozoon spp. prevalence or parasitemia; however, our results suggest that species and habitat type play a role in susceptibility to Hepatozoon spp. infection.


Assuntos
Eucoccidiida , Mercúrio , Poluentes Químicos da Água , Animais , South Carolina , Mercúrio/análise , Ecossistema , Parasitemia/parasitologia , Bioacumulação , Serpentes/parasitologia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-38302008

RESUMO

Eggs of oviparous reptiles are ideal models for studying evolutionary patterns of embryonic metabolism since they allow tracking of energy allocation during development. Analyzing oxygen consumption of whole eggs throughout development indicates three patterns among reptiles. Embryos initially grow and consume oxygen exponentially, but oxygen consumption slows, or drops before hatching in some species. Turtles, crocodilians, and most lizards follow curves with initial exponential increases followed by declines, whereas embryonic snakes that have been studied exhibit a consistently exponential pattern. This study measured oxygen consumption of corn snake, Pantherophis guttatus, embryos to determine if this species also exhibits an exponential increase in oxygen consumption. Individual eggs, sampled weekly from oviposition to hatching, were placed in respirometry chambers for 24-h during which oxygen consumption was recorded. Embryos were staged and carcasses and yolk were weighed separately. Results indicate steady inclines in oxygen consumption during early stages of development, with a rapid increase prior to hatching. The findings support the hypothesis that embryonic oxygen consumption of snakes differs from most other non-avian reptiles. Total energy required for development was determined based on calorimetry of initial yolk compared to hatchlings and residual yolk and by integration of the area under the curve plotting oxygen consumption versus age of embryos. The cost of development estimates based on these two methods were 6.4 and 10.0 kJ, respectively. Our results emphasize the unique physiological aspects of snake embryogenesis and illustrate how the study of physiological characteristics can contribute to the broader understanding of reptilian evolution.


Assuntos
Colubridae , Oviparidade , Zea mays , Feminino , Animais , Oviparidade/fisiologia , Embrião não Mamífero/fisiologia , Serpentes
13.
Artigo em Inglês | MEDLINE | ID: mdl-38373589

RESUMO

Vertebrates elevate heart rate when metabolism increases during digestion. Part of this tachycardia is due to a non-adrenergic-non-cholinergic (NANC) stimulation of the cardiac pacemaker, and it has been suggested these NANC factors are circulating hormones that are released from either gastrointestinal or endocrine glands. The NANC stimulation is particularly pronounced in species with large metabolic responses to digestion, such as reptiles. To investigate the possibility that the pancreas may release hormones that exert positive chronotropic effects on the digesting Burmese python heart, a species with very large postprandial changes in heart rate and oxygen uptake, we evaluate how pancreatectomy affects postprandial heart rate before and after autonomic blockade of the muscarinic and the beta-adrenergic receptors. We also measured the rates of oxygen consumption and evaluated the short-term control of the heart using the spectral analysis of heart rate variability and the baroreflex sequence method. Digestion caused the ubiquitous tachycardia, but the intrinsic heart rate (revealed after the combination of atropine and propranolol) was not affected by pancreatectomy and therefore hormones, such as glucagon and insulin, do not appear to contribute to the regulation of heart rate during digestion in Burmese pythons.


Assuntos
Boidae , Animais , Frequência Cardíaca/fisiologia , Boidae/fisiologia , Taquicardia , Pâncreas , Hormônios/metabolismo
14.
Horm Behav ; 161: 105517, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38422864

RESUMO

We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8-16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment-organism interactions mediate seasonally adaptive responses.

15.
Ecol Evol ; 14(2): e11073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405409

RESUMO

Tuatara are the sole extant species in the reptile order Rhynchocephalia. They are ecologically and evolutionarily unique, having been isolated geographically for ~84 million years and evolutionarily from their closest living relatives for ~250 million years. Here we report the tuatara gut bacterial community for the first time. We sampled the gut microbiota of translocated tuatara at five sanctuaries spanning a latitudinal range of ~1000 km within Aotearoa New Zealand, as well as individuals from the source population on Takapourewa (Stephens Island). This represents a first look at the bacterial community of the order Rhynchocephalia and provides the opportunity to address several key hypotheses, namely that the tuatara gut microbiota: (1) differs from those of other reptile orders; (2) varies among geographic locations but is more similar at sites with more similar temperatures and (3) is shaped by tuatara body condition, parasitism and ambient temperature. We found significant drivers of the microbiota in sampling site, tuatara body condition, parasitism and ambient temperature, suggesting the importance of these factors when considering tuatara conservation. We also derived a 'core' community of shared bacteria across tuatara at many sites, despite their geographic range and isolation. Remarkably, >70% of amplicon sequence variants could not be assigned to known genera, suggesting a largely undescribed gut bacterial community for this ancient host species.

16.
Cureus ; 16(1): e53005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406140

RESUMO

Alligator bites in humans present a significant concern for public safety in the southern United States, especially in states like Florida with substantial alligator populations. Although these reptiles play a vital role in the local ecology, encounters with humans can lead to severe injuries and even fatalities. A case report is presented of a 58-year-old male who suffered an alligator bite while attempting to take a selfie with the reptile during a hunting trip in rural Florida. The patient's injuries included multiple lacerations on the dorsum of his right hand. Despite the incident, the patient hesitated in seeking medical attention due to a lack of insurance, emphasizing the need for public awareness of alligator bite management. The discussion highlights the potential complications of alligator bites, including hemorrhage and infection, as well as the importance of appropriate medical treatment, including wound irrigation, debridement, and antibiotic therapy. Moreover, preventive strategies are discussed, such as maintaining a safe distance from alligators and refraining from feeding them, to ensure coexistence between humans and these reptiles in their natural habitats. As knowledge of alligator bites remains limited, this case report contributes valuable information to promote public safety and guide future research in this area.

17.
Integr Zool ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348500

RESUMO

In winter, many reptiles have a period of inactivity ("brumation"). During brumation there is no energetic intake, therefore there would be an advantage to reducing energetic expenditure. The size of energetically costly organs, a major determinant of metabolic rate, is known to be flexible in many tetrapods. Seasonal plasticity of organ size could serve as both an energy-saving mechanism and a source of nutrients for brumating reptiles. We studied a population of an invasive gecko, Tarentola annularis, to test for seasonal changes in activity, metabolic rate, and mass of various organs. The observed period of inactivity was December-February. Standard metabolic rates during the activity season were 1.85 times higher than in brumating individuals. This may be attributed to decreased organ mass during winter: heart mass decreased by 37%, stomach mass by 25%, and liver mass by 69%. Interestingly, testes mass increased by 100% during winter, likely in preparation for the breeding season, suggesting that males prioritize breeding over other functions upon return to activity. The size of the kidneys and lungs remained constant. Organ atrophy occurred only after geckos reduced their activity, so we hypothesize that organ mass changes in response to (rather than in anticipation of) cold winter temperatures and the associated fasting. Degradation of visceral organs can maintain energy demands in times of low supply, and catabolism of the protein from these organs can serve as a source of both energy and water during brumation. These findings bring us closer to a mechanistic understanding of reptiles' physiological adaptations to environmental changes.

18.
Am J Vet Res ; : 1-12, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382200

RESUMO

OBJECTIVE: To describe the clinical features, histopathologic lesions, and outcome of cardiovascular disease in central bearded dragons. ANIMALS: 54 bearded dragons. METHODS: Retrospective evaluation of captive bearded dragons with antemortem imaging or postmortem diagnosis of cardiovascular disease from 2007 to 2022 from 6 hospitals. RESULTS: The total prevalence of cardiovascular disease was 3.3% (54/1,655). Physical examination findings were available in 46 cases with change in mentation being the most common finding (n = 28/46 [60.9%]), followed by dehydration (17/46 [37%]), palpable coelomic mass (13/46 [28.3%]), dyspnea (10/46 [21.7%]), and sunken eyes (10/46 [21.7%)]. Doppler auscultation revealed an arrhythmia in 5/34 (14.7%) animals. Diagnostic imaging was only performed on 21 animals, and 10 (47.6%) had cardiovascular abnormalities described. In total, 84 cardiovascular diagnoses were found in 54 animals. The most common diagnosis was myocarditis (n = 14) followed by aneurysms (11), pericardial effusion (9), atherosclerosis (7), epicarditis (7), and myocardial degeneration/necrosis (7). Overall, 62 causes of death were identified in 52 cases, with cardiovascular disease being the most common (n = 18/52 [34.5%]). Only 3/54 animals were diagnosed with congestive heart failure. Animals with aneurysms were more likely to die to due cardiovascular disease compared to other types of cardiovascular diagnoses (OR, 43.75; 95% CI, 4.88 to 392.65; P < .001). CLINICAL RELEVANCE: Diagnosis of cardiovascular disease in bearded dragons is challenging given the inconsistent clinical presentation; however, it should remain a differential in animals with nonspecific signs of illness. Antemortem diagnostics are recommended in suspected cases, including diagnostic imaging. Of the cardiovascular diseases described, aneurysms most often contributed to clinical demise.

19.
Infect Genet Evol ; 118: 105569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354994

RESUMO

Ticks pose significant health risks to both wildlife and humans due to their role as vectors for various pathogens. In this study, we investigated tick infestation patterns, tick-associated pathogens, and genetic relationships within the tick species Amblyomma gervaisi, focusing on its prevalence in monitor lizards (Varanus bengalensis) across different districts in Pakistan. We examined 85 monitor lizards and identified an overall mean intensity of 19.59 ticks per infested lizard and an overall mean abundance of 11.98 ticks per examined lizard. All collected ticks (n = 1019) were morphologically identified as A. gervaisi, including 387 males, 258 females, 353 nymphs, and 21 larvae. The highest tick prevalence was observed in the Buner district, followed by Torghar and Shangla, with the lowest prevalence in Chitral. Lizard captures primarily occurred from May to October, correlating with the period of higher tick infestations. Molecular analysis was conducted on tick DNA, revealing genetic similarities among A. gervaisi ticks based on 16S rDNA and ITS2 sequences. Notably, we found the absence of A. gervaisi ITS2 sequences in the NCBI GenBank, highlighting a gap in existing genetic data. Moreover, our study identified the presence of pathogenic microorganisms, including Ehrlichia sp., Candidatus Ehrlichia dumleri, Anaplasma sp., Francisella sp., Rickettsia sp., and Coxiella sp., in these ticks. BLAST analysis revealed significant similarities between these pathogenic sequences and known strains, emphasizing the potential role of these ticks as vectors for zoonotic diseases. Phylogenetic analyses based on nuclear ITS2 and mitochondrial 16S rDNA genes illustrated the genetic relationships of A. gervaisi ticks from Pakistan with other Amblyomma species, providing insights into their evolutionary history. These findings contribute to our understanding of tick infestation patterns, and tick-borne pathogens in monitor lizards, which has implications for wildlife health, zoonotic disease transmission, and future conservation efforts. Further research in this area is crucial for a comprehensive assessment of the risks associated with tick-borne diseases in both wildlife and humans.


Assuntos
Lagartos , Rickettsia , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Masculino , Feminino , Carrapatos/microbiologia , Rickettsia/genética , Ehrlichia/genética , Amblyomma/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Anaplasma/genética , Filogenia , Paquistão/epidemiologia , Animais Selvagens/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Zoonoses , DNA Ribossômico
20.
mSphere ; 9(3): e0047523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349154

RESUMO

Reptiles and amphibians (herptiles) are some of the most endangered and threatened species on the planet and numerous conservation strategies are being implemented with the goal of ensuring species recovery. Little is known, however, about the gut microbiome of wild herptiles and how it relates to the health of these populations. Here, we report results from the gut microbiome characterization of both a broad survey of herptiles, and the correlation between the fungus Basidiobolus, and the bacterial community supported by a deeper, more intensive sampling of Plethodon glutinosus, known as slimy salamanders. We demonstrate that bacterial communities sampled from frogs, lizards, and salamanders are structured by the host taxonomy and that Basidiobolus is a common and natural component of these wild gut microbiomes. Intensive sampling of multiple hosts across the ecoregions of Tennessee revealed that geography and host:geography interactions are strong predictors of distinct Basidiobolus operational taxonomic units present within a given host. Co-occurrence analyses of Basidiobolus and bacterial community diversity support a correlation and interaction between Basidiobolus and bacteria, suggesting that Basidiobolus may play a role in structuring the bacterial community. We further the hypothesis that this interaction is advanced by unique specialized metabolism originating from horizontal gene transfer from bacteria to Basidiobolus and demonstrate that Basidiobolus is capable of producing a diversity of specialized metabolites including small cyclic peptides.IMPORTANCEThis work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Fungos/genética , RNA Ribossômico 16S/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...